53 research outputs found

    Study the Effect of Substitution Filler on performance of Asphalt Mixture

    Get PDF
    The major distresses in asphalt pavements are rutting, fatigue, and adhesion loss (moisture susceptibility). In this research study, two substitution fillers (Cement and Lime) were used with two different aggregate quarries (based on minerals composition) to evaluate the relatively most beneficial combination of both fillers as well as an aggregate quarry to enhance the performance life of asphalt pavements, especially in under-developed countries. Four basic tests, (Asphalt Pavement Analyzer, Four Points Bending Beam, Dynamic Modulus, and Rolling Bottle Test) that used for the most desired properties of any asphalt pavement, were utilized to access the performance properties of modified asphalt mixture. Based on all laboratory test results this research study concludes that replacement of aggregate filler with hydrated lime and cement has a beneficial effect on asphalt mix performance and to save investment by using raw material. Substitution filler improves the high-temperature rut performance and intermediate temperature fatigue performance of asphaltic concrete mixture up to 25% to that of the conventional mixture. At the same time, substitution filler has more beneficial to improve 70% adhesion properties to that of the conventional mixture

    Maximum Power Extraction from a Standalone Photo Voltaic System via Neuro-Adaptive Arbitrary Order Sliding Mode Control Strategy with High Gain Differentiation

    Get PDF
    In this work, a photovoltaic (PV) system integrated with a non-inverting DC-DC buck-boost converter to extract maximum power under varying environmental conditions such as irradiance and temperature is considered. In order to extract maximum power (via maximum power transfer theorem), a robust nonlinear arbitrary order sliding mode-based control is designed for tracking the desired reference, which is generated via feed forward neural networks (FFNN). The proposed control law utilizes some states of the system, which are estimated via the use of a high gain differentiator and a famous flatness property of nonlinear systems. This synthetic control strategy is named neuroadaptive arbitrary order sliding mode control (NAAOSMC). The overall closed-loop stability is discussed in detail and simulations are carried out in Simulink environment of MATLAB to endorse effectiveness of the developed synthetic control strategy. Finally, comparison of the developed controller with the backstepping controller is done, which ensures the performance in terms of maximum power extraction, steady-state error and more robustness against sudden variations in atmospheric conditions

    Neural network-based adaptive global sliding mode MPPT controller design for stand-alone photovoltaic systems

    Get PDF
    The increasing energy demand and the target to reduce environmental pollution make it essential to use efficient and environment-friendly renewable energy systems. One of these systems is the Photovoltaic (PV) system which generates energy subject to variation in environmental conditions such as temperature and solar radiations. In the presence of these variations, it is necessary to extract the maximum power via the maximum power point tracking (MPPT) controller. This paper presents a nonlinear generalized global sliding mode controller (GGSMC) to harvest maximum power from a PV array using a DC-DC buck-boost converter. A feed-forward neural network (FFNN) is used to provide a reference voltage. A GGSMC is designed to track the FFNN generated reference subject to varying temperature and sunlight. The proposed control strategy, along with a modified sliding mode control, eliminates the reaching phase so that the sliding mode exists throughout the time. The system response observes no chattering and harmonic distortions. Finally, the simulation results using MATLAB/Simulink environment demonstrate the effectiveness, accuracy, and rapid tracking of the proposed control strategy. The results are compared with standard results of the nonlinear backstepping controller under abrupt changes in environmental conditions for further validation

    Identification of GLI1 and KIAA0825 Variants in Two Families with Postaxial Polydactyly

    Get PDF
    Polydactyly is a rare autosomal dominant or recessive appendicular patterning defect of the hands and feet, phenotypically characterized by the duplication of digits. Postaxial polydactyly (PAP) is the most common form and includes two main types: PAP type A (PAPA) and PAP type B (PAPB). Type A involves a well-established extra digit articulated with the fifth or sixth metacarpal, while type B presents a rudimentary or poorly developed superfluous digit. Pathogenic variants in several genes have been identified in isolated and syndromic forms of polydactyly. The current study presents two Pakistani families with autosomal recessive PAPA with intra- and inter-familial phenotype variability. Whole-exome sequencing and Sanger analysis revealed a novel missense variant in KIAA0825 (c.3572C>T: p.Pro1191Leu) in family A and a known nonsense variant in GLI1 (c.337C>T: p.Arg113*) in family B. In silico studies of mutant KIAA0825 and GLI1 proteins revealed considerable structural and interactional modifications that suggest an abnormal function of the proteins leading to the disease phenotype. The present study broadens the mutational spectrum of KIAA0825 and demonstrates the second case of a previously identified GLI1 variant with variable phenotypes. These findings facilitate genetic counseling in Pakistani families with a polydactyly-related phenotype

    Understanding Mobile Tourism Shopping in Pakistan: An Integrating Framework of Innovation Diffusion Theory and Technology Acceptance Model

    No full text
    Consumer adoption of mobile-based tourism shopping is an emerging but overlooked area in tourism research. Given the paybacks and potential scope of this new channel, this study attempts to bridge the gap by proposing a multimediation model investigating mobile tourism shopping (MTS) in a developing country, Pakistan. In particular, we applied structural equation modeling through partial-least-squares structural equation modeling (PLS-SEM) on 396 responses collected from mobile respondents who recently purchased tourism products using a mobile device(s). It was discovered that social presence, directly and indirectly, influences tourist intentions towards MTS. The results further show that the tourists’ perception of compatibility and relative advantages of MTS have insignificant influence on their intention to accept a mobile device(s) for tourism shopping. The findings and implications of the study furnish new vistas to research discourse and managerial significance. Economically, this research contributes to knowledge that could increase income and create jobs in the host country

    Factors Determining Consumer Acceptance of NFC Mobile Payment: An Extended Mobile Technology Acceptance Model

    No full text
    The demand for mobile payments using smartphones to substitute the need for cash, credit cards, or checks is swiftly increasing in Pakistan. This study investigates the factors determining consumers’ behavioral intention to adopt near-field communication mobile payment from a developing country’s viewpoint. A conceptual framework was adopted based on the mobile technology acceptance model (MTAM), integrating self-efficacy theory, critical mass theory, flow theory, and system and service quality to elucidate the behavioral intention. Data were collected through a self-administered questionnaire applied to 310 nonusers of near-field communication mobile payment in Pakistan. The analysis was performed using SmartPLS3.0. The results demonstrated that other independent variables are the main predictors of the intention to adopt mobile payment besides technology self-efficacy, perceived critical mass, and mobile ease of use. The study concludes with key implications and future work directions concerning the limitation of this study

    Phase microstructure evaluation and microwave dielectric properties of (1–x)Mg0.95Ni0.05Ti0.98Zr0.02O3–xCa0.6La0.8/3TiO3 ceramics

    No full text
    Abstract All the compositions in the (1−x)Mg0.95Ni0.05Ti0.98Zr0.02O3–xCa0.6La0.8/3TiO3 (0 ≤ x ≤ 0.2) series were fabricated using solid state sintering route. Mg0.95Ni0.05Ti0.98Zr0.02O3 possessed excellent microwave dielectric properties with ε r ≈ 17.1, Q u f 0 ≈ 195855 GHz, and τ f ≈ -46 ppm/°C. τ f was tuned through zero by mixing with Ca0.6La0.8/3TiO3. In the present study, τ f ≈ -2 ppm/°C with ε r ≈ 23.9 and high Q u f 0 ≈ 115870 GHz was achieved for x = 0.15, i.e., for a mixture of 85% Mg0.95Ni0.05Ti0.98Zr0.02O3 and 15% Ca0.6La0.8/3TiO3
    • …
    corecore